LipL21 lipoprotein binding to peptidoglycan enables Leptospira interrogans to escape NOD1 and NOD2 recognition

نویسندگان

  • Gwenn Ratet
  • Ignacio Santecchia
  • Martine Fanton d'Andon
  • Frédérique Vernel-Pauillac
  • Richard Wheeler
  • Pascal Lenormand
  • Frédéric Fischer
  • Pierre Lechat
  • David A Haake
  • Mathieu Picardeau
  • Ivo G Boneca
  • Catherine Werts
چکیده

Leptospirosis is a widespread zoonosis, potentially severe in humans, caused by spirochetal bacteria, Leptospira interrogans (L. interrogans). Host defense mechanisms involved in leptospirosis are poorly understood. Recognition of lipopolysaccharide (LPS) and lipoproteins by Toll-Like Receptors (TLR)4 and TLR2 is crucial for clearance of leptospires in mice, yet the role of Nucleotide Oligomerization Domain (NOD)-like receptors (NOD)1 and NOD2, recognizing peptidoglycan (PG) fragments has not previously been examined. Here, we show that pathogenic leptospires escape from NOD1 and NOD2 recognition both in vitro and in vivo, in mice. We found that leptospiral PG is resistant to digestion by certain hydrolases and that a conserved outer membrane lipoprotein of unknown function, LipL21, specific for pathogenic leptospires, is tightly bound to the PG. Leptospiral PG prepared from a mutant not expressing LipL21 (lipl21-) was more readily digested than the parental or complemented strains. Muropeptides released from the PG of the lipl21- mutant, or prepared using a procedure to eliminate the LipL21 protein from the PG of the parental strain, were recognized in vitro by the human NOD1 (hNOD1) and NOD2 (hNOD2) receptors, suggesting that LipL21 protects PG from degradation into muropeptides. LipL21 expressed in E. coli also resulted in impaired PG digestion and NOD signaling. We found that murine NOD1 (mNOD1) did not recognize PG of L. interrogans. This result was confirmed by mass spectrometry showing that leptospiral PG was primarily composed of MurTriDAP, the natural agonist of hNOD1, and contained only trace amounts of the tetra muropeptide, the mNOD1 agonist. Finally, in transgenic mice expressing human NOD1 and deficient for the murine NOD1, we showed enhanced clearance of a lipl21- mutant compared to the complemented strain, or to what was observed in NOD1KO mice, suggesting that LipL21 facilitates escape from immune surveillance in humans. These novel mechanisms allowing L. interrogans to escape recognition by the NOD receptors may be important in circumventing innate host responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LipL21 is a novel surface-exposed lipoprotein of pathogenic Leptospira species.

Leptospira is the etiologic agent of leptospirosis, a bacterial zoonosis distributed worldwide. Leptospiral lipopolysaccharide is a protective immunogen, but the extensive serological diversity of leptospires has inspired a search for conserved outer membrane proteins (OMPs) that may stimulate heterologous immunity. Previously, a global analysis of leptospiral OMPs (P. A. Cullen, S. J. Cordwell...

متن کامل

Structural Models of Zebrafish (Danio rerio) NOD1 and NOD2 NACHT Domains Suggest Differential ATP Binding Orientations: Insights from Computational Modeling, Docking and Molecular Dynamics Simulations

Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and NOD2 are cytosolic pattern recognition receptors playing pivotal roles in innate immune signaling. NOD1 and NOD2 recognize bacterial peptidoglycan derivatives iE-DAP and MDP, respectively and undergoes conformational alternation and ATP-dependent self-oligomerization of NACHT domain followed by downstream signaling. Lack ...

متن کامل

Nucleotide-Binding Oligomerization Domain-1 and -2 Play No Role in Controlling Brucella abortus Infection in Mice

Nucleotide-binding oligomerization domain proteins (NODs) are modular cytoplasmic proteins implicated in the recognition of peptidoglycan-derived molecules. Further, several in vivo studies have demonstrated a role for Nod1 and Nod2 in host defense against bacterial pathogens. Here, we demonstrated that macrophages from NOD1-, NOD2-, and Rip2-deficient mice produced lower levels of TNF-α follow...

متن کامل

NOD1 and NOD2 mediate sensing of periodontal pathogens.

In bacterial infection, Nucleotide-binding Oligomerization Domain (NOD) 1 and NOD2 induce innate immune responses by recognizing fragments of the bacterial component peptidoglycan (PGN). To determine the roles of these receptors in detection of periodontal pathogens, we stimulated human embryonic kidney cells expressing NOD1 or NOD2 with heat-killed Porphyromonas gingivalis, Aggregatibacter act...

متن کامل

The Dual NOD1/NOD2 Agonism of Muropeptides Containing a Meso-Diaminopimelic Acid Residue

Muropeptides are fragments of peptidoglycan that trigger innate immune responses by activating nucleotide-binding oligomerization domain (NOD) 1 and NOD2. Muropeptides from Gram-negative bacteria contain a meso-diaminopimelic acid (meso-DAP) residue in either a terminal or a non-terminal position. While the former ones are known to be recognized by NOD1, much less is known about recognition of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017